
Lection 07

Dynamic analysis: binary translation
vs. compiler instrumentation

Static vs. dynamic analysis

2

❑We’ve covered various static analysis

techniques for various goals

❑Dynamic analysis can help with some

situations when static cannot

➢Produce (almost) no false positives

➢Produce a failing input data, ready to debug

➢Cons: expensive or very expensive

➢Cons: will find an error only on the executed path

Dynamic analysis tools

3

❑Basic idea: execute a program on user

specified data with some “control”

over its behavior

➢This should be good enough to detect

“interesting” situations when they occur

➢Then issue a warning and (maybe) terminate a

program

❑Various approaches to execute “control”

➢Dynamic binary translation

➢Static instrumentation (compiler-level or binary)

Binary translation

4

❑A process of transforming a binary program

to some other program

➢Dynamic: do that at runtime

➢Terminology: host/guest program/OS

❑Difficulties:

➢Code discovery

➢Self-modifying code

➢Jump to computed address

Incremental translation

5

❑Lazily compile guest binary code fragments

as we go

➢A fragment is called a translation block

(usually a basic block or an extended bb)

➢Compiled blocks are cached

➢Cached blocks are chained for speed

➢Need to be able to break chains for interrupt

processing

Valgrind

6

❑Dynamic binary translation framework + tools

for popular defects

❑Framework features

➢Kernel interface virtualisation (API level)

➢Debuginfo reading

➢Error management

➢Code JITting and management

➢a GDB server

➢Tools API (instrumentation)

VEX compiler

7

❑Extended bb compiler

➢Based on a simple IR (SSA-like)

➢Machine code --> IR --> Instrumented IR -->

machine code (insn selection, regalloc)

➢Starting at specified insn, up to next branch

➢Each insn individually translated

➢Optimised over the whole block

➢Follows uncond branches and calls to known

destinations (avg block size ~ 10 guest insns)

VEX compiler - II

8

❑IR: simple single-assignment language for

straight-line code

➢Loads, stores, assignment to IR temporaries,

arithmetic

➢GET and PUT to model register access

➢Side exits (conditional)

❑Guest state: holds register values

➢GET and PUT reference offsets in it

➢Dedicate a host register to point at it

Memcheck tool

9

❑Find common memory related errors

➢Observes all memory accesses AND all malloc/free calls

➢Verifies each access is allowable

➢Verifies that undefinedness will not cause observable

behaviour

➢As a side effect, checks for memory leaks

char* p = malloc(10); ... p[10] ... error: out of bounds read
char* p = malloc(10); free(p); ... p[5] ... error: reading freed
char p[10]; ... if (p[5] == 'x') {..} error: branch on undefined
char* p = malloc(10); p = NULL; error: lost block

Memcheck tool - II

10

❑IR modification example
Original code In IR Instrumentation IR
subq %rax, %rdi tL = GET(328) qL = GET(1328)

tR = GET(416) qR = GET(1416)
tRes = Sub64(tL, tR) qRes =

Left64(UifU64(qL, qR))
PUT(416) = tRes PUT(1416) = qR

jz 0x1234 ExitIf CmpEQ64(tL, tR) CallIf
0x1234 (CmpNEZ64(qRes))

report_error()
movq (%rcx), %rdx tA = GET(360) qA = GET(1360)

tD = LOAD64le(tA) CallIf (CmpNEZ64(qA))
report_error()

qD = Call
helper_LOAD64le(tA)

PUT(368) = tD PUT(1368) = qD

tXX: 64 bit IR temps holding original values.
qXX: 64 bit IR temps holding definedness bits.
0 = defined, 1 = undefined.

Memcheck architecture

11

❑Shadow registers and memory

➢Initially – 1 bit/byte for addressability, 8 bits/byte

for tracking undefinedness

❑Compression optimization

➢Bit-precise tracking is crucial for quality but

needed rarely for bitwise ops

➢Introduce 2 bits/byte scheme: NOACCESS,

UNDEFINED, DEFINED or PARTDEF

➢Full 8 bits mapping only for PARTDEF (rare),

slower (AVL tree) but common case is much faster

❑Multithreading: serialize threads

Memcheck mapping

12

Compiler instrumentation

13

❑If we have source code, we can insert all

required instrumentation statically

➢Easier – have the compiler power behind you

➢Faster – no dynamic translation penalty

➢Faster – because the compiler can then throw

away or optimize instrumentation (if done on IR)

❑Cons: sometimes we haven’t that code :)

❑For both binary translation and compiler way,

need to (re)compile with -g

Google Sanitizers

14

❑Most known attempt to build tools around

compiler instrumentation

❑A family of tools: address, memory, thread,

kernel, … sanitizer

❑Supported in LLVM and then GCC (LLVM is

main version, GCC lags behind a bit)

❑Faster than Valgrind (2x-5x vs 10x-30x)

Address Sanitizer

15

❑Find heap/stack/global out of bounds

accesses

❑Find use after free

❑Idea: compiler instrumentation + shadow

memory and runtime library

❑Instrumentation:

if (IsPoisoned(address)) {

ReportError(address, kAccessSize, kIsWrite);

}

*address = ...;

Address Sanitizer - II

16

❑Shadow memory

➢8 bytes to 1 byte

➢All 8 bytes in qword are unpoisoned (i.e.

addressible). The shadow value is 0.

➢All 8 bytes in qword are poisoned (i.e. not

addressible). The shadow value is negative.

➢First k bytes are unpoisoned, the rest 8-k are

poisoned. The shadow value is k. This is

guaranteed by the fact that malloc returns

8-byte aligned chunks of memory.

Address Sanitizer - III

17

❑Then the instrumentation looks like:
byte *shadow_address = MemToShadow(address);
byte shadow_value = *shadow_address;
if (shadow_value) {
if (SlowPathCheck(shadow_value, address,

kAccessSize)) {
ReportError(address, kAccessSize, kIsWrite);

}
}
// Check the cases where we access first k bytes
// of the qword and these k bytes are unpoisoned.
bool SlowPathCheck(shadow_value, address,

kAccessSize) {
last_accessed_byte = (address & 7) +

kAccessSize - 1;
return (last_accessed_byte >= shadow_value);

}

Address Sanitizer - IV

18

❑Shadow memory mapping

➢64-bit: Shadow = (Mem >> 3) + 0x7fff8000;

➢32-bit: Shadow = (Mem >> 3) + 0x20000000;

❑ReportError function

➢Now a call, was an insn making SIGILL (ud2a)

shr $0x3,%rax # shift by 3
mov $0x100000000000,%rcx
or %rax,%rcx # add offset
cmpb $0x0,(%rcx) # load shadow
je 1f <foo+0x1f>
mov %rdi,%rax # failing address in %rax
Ud2a # generate SIGILL
movq $0x1234,(%rdi) # original store

Stack buffer overflow

19

❑Redzones that are poisoned/unpoisoned on

function entry/exit
void foo() {
char redzone1[32]; // 32-byte aligned
char a[8]; // 32-byte aligned
char redzone2[24];
char redzone3[32]; // 32-byte aligned
int *shadow_base = MemToShadow(redzone1);
shadow_base[0] = 0xffffffff; // poison redzone1
shadow_base[1] = 0xffffff00; // poison redzone2, unpoison 'a‘
shadow_base[2] = 0xffffffff; // poison redzone3

<... function code ...>

shadow_base[0] = shadow_base[1] = shadow_base[2] = 0;
// unpoison all return;

}

Run-time library

20

❑Malloc/free wrappers

➢malloc allocates memory with redzones and

poisons redzones (in shadow)

➢free poisons deallocating regions and places it on

quarantine

❑Strlen etc. interceptors

❑Error printing, stack traces, ...

Thread Sanitizer

21

❑Instrumentation: memory accesses

❑Shadow memory: 8 byte -> N 8-byte words

➢Each shadow word has thread id, clock,

read/write bit, access size, address offset

➢Each shadow word represents an access

❑State machine: updates shadow words on

memory access

➢If cannot order two memory accesses to same

region (different threads, no locking), report a race

Memory Sanitizer

22

❑Detects uninitialized memory reads

(not supported by Address Sanitizer)

❑Propagating shadow data

➢Can copy uninitialized data (or too many warnings)

➢Can process it, too

➢Propagate through expressions, calls

➢Report only on branches or side-effects (calls)

❑Track origins of uninitialized data

➢Similar to valgrind --track-origins=yes

➢Secondary shadow memory

➢Propagating it, too

Memory Sanitizer - II

23

❑Need to track all memory stores or false

positives

➢May happen in standard libraries, syscalls, asm,

JIT compilation

❑Possible solutions

➢Instrument “everything” (at least std libs)

➢Add dynamic tool like valgrind / DynamoRIO

References

24

➢https://github.com/google/sanitizers/wiki/AddressSanit
izerAlgorithm

➢https://github.com/google/sanitizers/wiki/MemorySaniti
zer

➢https://gcc.gnu.org/wiki/cauldron2012?action=AttachFil
e&do=get&target=kcc.pdf

➢https://fosdem.org/2017/schedule/event/valgrind_memche
ck/attachments/slides/1841/export/events/attachments/val
grind_memcheck/slides/1841/valgrind_memcheck.pdf

➢https://fosdem.org/2017/schedule/event/valgrind_vex_fu
ture/attachments/slides/1842/export/events/attachments/v
algrind_vex_future/slides/1842/valgrind_vex_future.pdf

➢http://valgrind.org/docs/valgrind2007.pdf

➢http://valgrind.org/docs/shadow-memory2007.pdf

https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
https://github.com/google/sanitizers/wiki/MemorySanitizer
https://gcc.gnu.org/wiki/cauldron2012?action=AttachFile&do=get&target=kcc.pdf
https://fosdem.org/2017/schedule/event/valgrind_memcheck/attachments/slides/1841/export/events/attachments/valgrind_memcheck/slides/1841/valgrind_memcheck.pdf
https://fosdem.org/2017/schedule/event/valgrind_vex_future/attachments/slides/1842/export/events/attachments/valgrind_vex_future/slides/1842/valgrind_vex_future.pdf
http://valgrind.org/docs/valgrind2007.pdf
http://valgrind.org/docs/shadow-memory2007.pdf

