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Dynamic analysis: binary translation 
vs. compiler instrumentation



Static vs. dynamic analysis
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❑We’ve covered various static analysis 

techniques for various goals

❑Dynamic analysis can help with some 

situations when static cannot

➢Produce (almost) no false positives

➢Produce a failing input data, ready to debug

➢Cons: expensive or very expensive

➢Cons: will find an error only on the executed path



Dynamic analysis tools
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❑Basic idea: execute a program on user 

specified data with some “control” 

over its behavior

➢This should be good enough to detect 

“interesting” situations when they occur

➢Then issue a warning and (maybe) terminate a 

program

❑Various approaches to execute “control”

➢Dynamic binary translation

➢Static instrumentation (compiler-level or binary)



Binary translation
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❑A process of transforming a binary program 

to some other program

➢Dynamic: do that at runtime

➢Terminology: host/guest program/OS

❑Difficulties:

➢Code discovery

➢Self-modifying code

➢Jump to computed address



Incremental translation
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❑Lazily compile guest binary code fragments 

as we go

➢A fragment is called a translation block

(usually a basic block or an extended bb)

➢Compiled blocks are cached

➢Cached blocks are chained for speed

➢Need to be able to break chains for interrupt 

processing



Valgrind
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❑Dynamic binary translation framework + tools 

for popular defects

❑Framework features

➢Kernel interface virtualisation (API level)

➢Debuginfo reading

➢Error management

➢Code JITting and management

➢a GDB server

➢Tools API (instrumentation)



VEX compiler
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❑Extended bb compiler

➢Based on a simple IR (SSA-like)

➢Machine code --> IR --> Instrumented IR --> 

machine code (insn selection, regalloc)

➢Starting at specified insn, up to next branch

➢Each insn individually translated

➢Optimised over the whole block

➢Follows uncond branches and calls to known 

destinations (avg block size ~ 10 guest insns)



VEX compiler - II
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❑IR: simple single-assignment language for 

straight-line code

➢Loads, stores, assignment to IR temporaries, 

arithmetic

➢GET and PUT to model register access

➢Side exits (conditional)

❑Guest state: holds register values

➢GET and PUT reference offsets in it

➢Dedicate a host register to point at it



Memcheck tool
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❑Find common memory related errors

➢Observes all memory accesses AND all malloc/free calls

➢Verifies each access is allowable

➢Verifies that undefinedness will not cause observable 

behaviour

➢As a side effect, checks for memory leaks

char* p = malloc(10); ... p[10] ... error: out of bounds read
char* p = malloc(10); free(p); ... p[5] ... error: reading freed
char p[10]; ... if (p[5] == 'x') {..} error: branch on undefined
char* p = malloc(10); p = NULL; error: lost block



Memcheck tool - II
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❑IR modification example
Original code In IR Instrumentation IR
subq %rax, %rdi tL = GET(328) qL = GET(1328)

tR = GET(416) qR = GET(1416)
tRes = Sub64(tL, tR) qRes = 

Left64(UifU64(qL, qR))
PUT(416) = tRes PUT(1416) = qR

jz 0x1234 ExitIf CmpEQ64(tL, tR) CallIf
0x1234 (CmpNEZ64(qRes))

report_error()
movq (%rcx), %rdx tA = GET(360) qA = GET(1360)

tD = LOAD64le(tA) CallIf (CmpNEZ64(qA))
report_error()

qD = Call 
helper_LOAD64le(tA)

PUT(368) = tD PUT(1368) = qD

tXX: 64 bit IR temps holding original values.
qXX: 64 bit IR temps holding definedness bits. 
0 = defined, 1 = undefined.



Memcheck architecture
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❑Shadow registers and memory

➢Initially – 1 bit/byte for addressability, 8 bits/byte 

for tracking undefinedness

❑Compression optimization

➢Bit-precise tracking is crucial for quality but 

needed rarely for bitwise ops

➢Introduce 2 bits/byte scheme: NOACCESS, 

UNDEFINED, DEFINED or PARTDEF

➢Full 8 bits mapping only for PARTDEF (rare), 

slower (AVL tree) but common case is much faster

❑Multithreading: serialize threads



Memcheck mapping
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Compiler instrumentation
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❑If we have source code, we can insert all 

required instrumentation statically

➢Easier – have the compiler power behind you

➢Faster – no dynamic translation penalty

➢Faster – because the compiler can then throw 

away or optimize instrumentation (if done on IR)

❑Cons: sometimes we haven’t that code :)

❑For both binary translation and compiler way, 

need to (re)compile with -g



Google Sanitizers
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❑Most known attempt to build tools around 

compiler instrumentation

❑A family of tools: address, memory, thread, 

kernel, … sanitizer

❑Supported in LLVM and then GCC (LLVM is 

main version, GCC lags behind a bit)

❑Faster than Valgrind (2x-5x vs 10x-30x)



Address Sanitizer
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❑Find heap/stack/global out of bounds 

accesses

❑Find use after free

❑Idea: compiler instrumentation + shadow 

memory and runtime library

❑Instrumentation:

if (IsPoisoned(address)) { 

ReportError(address, kAccessSize, kIsWrite); 

}

*address = ...;



Address Sanitizer - II
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❑Shadow memory

➢8 bytes to 1 byte

➢All 8 bytes in qword are unpoisoned (i.e. 

addressible). The shadow value is 0. 

➢All 8 bytes in qword are poisoned (i.e. not 

addressible). The shadow value is negative. 

➢First k bytes are unpoisoned, the rest 8-k are 

poisoned. The shadow value is k. This is 

guaranteed by the fact that malloc returns 

8-byte aligned chunks of memory. 



Address Sanitizer - III
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❑Then the instrumentation looks like:
byte *shadow_address = MemToShadow(address); 
byte shadow_value = *shadow_address; 
if (shadow_value) { 
if (SlowPathCheck(shadow_value, address,

kAccessSize)) { 
ReportError(address, kAccessSize, kIsWrite); 

} 
}
// Check the cases where we access first k bytes
// of the qword and these k bytes are unpoisoned. 
bool SlowPathCheck(shadow_value, address,

kAccessSize) { 
last_accessed_byte = (address & 7) + 

kAccessSize - 1; 
return (last_accessed_byte >= shadow_value); 

}



Address Sanitizer - IV
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❑Shadow memory mapping

➢64-bit: Shadow = (Mem >> 3) + 0x7fff8000;

➢32-bit: Shadow = (Mem >> 3) + 0x20000000;

❑ReportError function

➢Now a call, was an insn making SIGILL (ud2a)

shr $0x3,%rax # shift by 3 
mov $0x100000000000,%rcx 
or %rax,%rcx # add offset
cmpb $0x0,(%rcx) # load shadow
je 1f <foo+0x1f>
mov %rdi,%rax # failing address in %rax
Ud2a # generate SIGILL
movq $0x1234,(%rdi) # original store



Stack buffer overflow
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❑Redzones that are poisoned/unpoisoned on 

function entry/exit
void foo() { 
char redzone1[32]; // 32-byte aligned 
char a[8]; // 32-byte aligned 
char redzone2[24]; 
char redzone3[32]; // 32-byte aligned 
int *shadow_base = MemToShadow(redzone1); 
shadow_base[0] = 0xffffffff; // poison redzone1
shadow_base[1] = 0xffffff00; // poison redzone2, unpoison 'a‘
shadow_base[2] = 0xffffffff; // poison redzone3 

<... function code ...>

shadow_base[0] = shadow_base[1] = shadow_base[2] = 0; 
// unpoison all return; 

}



Run-time library
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❑Malloc/free wrappers

➢malloc allocates memory with redzones and 

poisons redzones (in shadow)

➢free poisons deallocating regions and places it on 

quarantine

❑Strlen etc. interceptors

❑Error printing, stack traces, ...



Thread Sanitizer

21

❑Instrumentation: memory accesses

❑Shadow memory: 8 byte -> N 8-byte words

➢Each shadow word has thread id, clock, 

read/write bit, access size, address offset

➢Each shadow word represents an access

❑State machine: updates shadow words on 

memory access

➢If cannot order two memory accesses to same 

region (different threads, no locking), report a race



Memory Sanitizer
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❑Detects uninitialized memory reads 

(not supported by Address Sanitizer)

❑Propagating shadow data

➢Can copy uninitialized data (or too many warnings)

➢Can process it, too

➢Propagate through expressions, calls

➢Report only on branches or side-effects (calls)

❑Track origins of uninitialized data

➢Similar to valgrind --track-origins=yes

➢Secondary shadow memory

➢Propagating it, too



Memory Sanitizer - II
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❑Need to track all memory stores or false 

positives

➢May happen in standard libraries, syscalls, asm, 

JIT compilation

❑Possible solutions

➢Instrument “everything” (at least std libs)

➢Add dynamic tool like valgrind / DynamoRIO
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