Курс «Алгоритмы и алгоритмические языки» 1 семестр 2016/2017

Лекция 10

Вычисления с плавающей точкой

- Предпосылки: дробные двоичные числа
- ♦ Стандарт арифметики с плавающей точкой IEEE 754: Определение
- Пример и свойства
- ♦ Округление, сложение, умножение
- ♦ Плавающие типы языка Си
- Флаги компилятора дсс

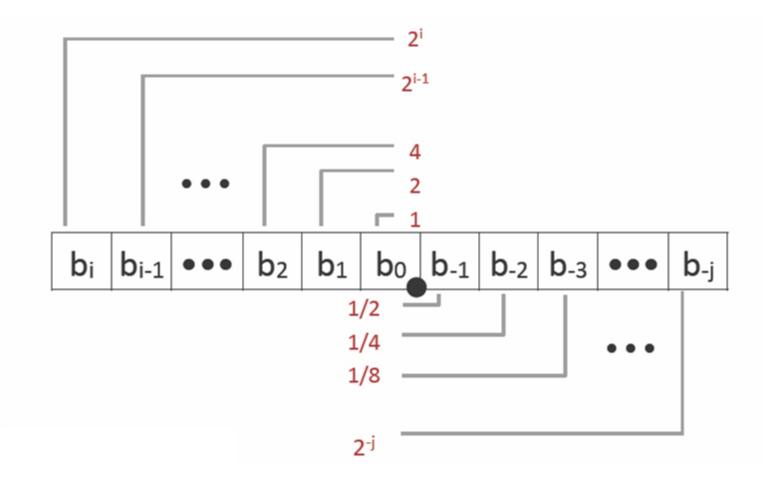
Дробные двоичные числа

♦ Что такое 1011.101₂ ?

$$1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} =$$

$$= 11 \frac{5}{8} = 11.625$$

Дробные двоичные числа



- ◆ Черное пятнышко двоичная точка
- ♦ Биты слева от точки умножаются на положительные степени 2
- ♦ Биты справа от точки умножаются на отрицательные степени 2

Дробные двоичные числа

Φ 0.1111111...₂ = 1.0-ε (ε \to 0), так как

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} + \dots \to 1$$
 при $n \to \infty$

- \diamond Точно можно представить только числа вида $\chi/2^k$
- Остальные рациональные числа представляются периодическими двоичными дробями:

$$\frac{1}{5} = 0.(0011)_2$$

 Иррациональные числа представляются апериодическими двоичными дробями и могут быть представлены только приближенно

Представление чисел с плавающей точкой (IEEE 754)

- ♦ Числа с плавающей точкой представляются в нормализованной форме: (-1^s) M 2^e
 - s код знака числа (он же знак мантиссы)
 - M мантисса ($1 \le M < 2$)
 - \bullet e (двоичный) порядок
- Первая цифра мантиссы в нормализованном представлении всегда 1. В стандарте принято решение не записывать в представление числа эту единицу (тем самым мантисса как бы увеличивается на разряд).

Экономия связана с тем, что в представление числа записывается не M, а frac = M - 1

Представление чисел с плавающей точкой

- Чтобы не записывать отрицательных чисел в поле порядка, вводится *смещение* $bias = 2^{k-1} 1$, где k 1 количество бит в поле для записи порядка, и вместо порядка e записывается код порядка exp, связанный с e соотношением e = exp bias.
- Нормализованное число (-1^s) M 2^e упаковывается в машинное слово (структуру) с полями s, frac и exp

s exp (код порядка) frac (код мантиссы)

Ширина поля s всегда равна 1.

Ширина полей *exp* и *frac* зависит от точности числа

Представление чисел с плавающей точкой

♦ Одинарная точность (32 бита):

 s
 ехр (код порядка)
 frac (код мантиссы)

 8 бит
 23 бита

bias = 127; $-126 \le e \le 127;$ $1 \le exp \le 254$

Двойная точность (64 бита):

s exp (код порядка) *frac* (код мантиссы)

11 бит 52 бита

bias = 1023; $-1022 \le e \le 1023$; $1 \le exp \le 2046$

Повышенная точность (80 бит):

 s
 exp (код порядка)
 frac (код мантиссы)

15 бит 64 бита

Представление чисел с плавающей точкой

♦ Пример

♦ Значащая часть

$$M = 1.11011011011_2$$
,
 $frac = 1101101101101_0000000000_2$

• Порядок

e = 13
bias = 127
exp =
$$140 = 10001100_2$$

◆ Результат

Представление нуля

- Для типа float код порядка ежр изменяется от 0000001 до 11111110
 (значению 0000001 соответствует порядок е = 126, значению 11111110 порядок е = 127)
- ♦ А какое значение представляют коды ехр = 00000000, frac ≠ 000...0?
 ехр = 11111111?

Большие числа

- Пусть exp = 111...1

Денормализованные числа

- $oldsymbol{\diamond}$ **ехр** вносит в значение такого числа постоянный вклад 2^{-k-2} ,

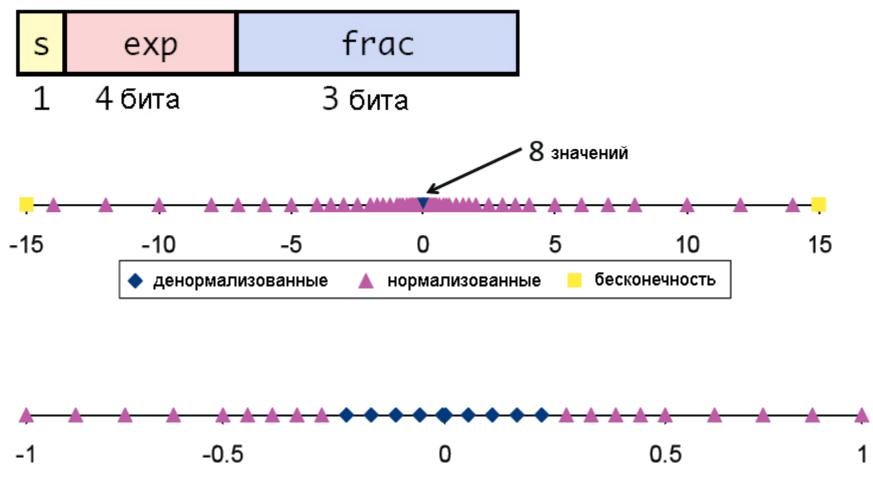
frac меняется от 000...01 до 111...1 и рассматривается уже не как мантисса, а как значение, умножаемое на ехр

Рассмотрим это на модельном примере:

8-разрядные числа с плавающей точкой (положительные)

S	exp		fr	'ac		
1	4 бита		3 бі	ита		
		s exp	frac	E	Value	
Ненормализованные числа		0 000	0 000	-6	0	
		0 000	0 001	-6	1/8*1/64 = 1/512	Близкие к 0
		0 000	0 010	-6	2/8*1/64 = 2/512	
		0 000	0 110	-6	6/8*1/64 = 6/512	11
		0 000	0 111	-6	7/8*1/64 = 7/512	Наибольшее ненормализованное
		0 000	1 000	-6	8/8*1/64 = 8/512	Наименьшее
		0 000	1 001	-6	9/8*1/64 = 9/512	нормализованное
		0 011	0 110	-1	14/8*1/2 = 14/16	
Hop	мализованные	0 011	0 111	-1	15/8*1/2 = 15/16	Ближайшее к 1 снизу
числа		0 011	1 000	0	8/8*1 = 1	
		0 011	1 001	0	9/8*1 = 9/8	Ближайшее к 1 сверху
		0 011	1 010	0	10/8*1 = 10/8	
		0 111	0 110	7	14/8*128 = 224	Наибольшее
		0 111	0 111	7	15/8*128 = 240	нормализованное
		0 111	1 000	n/a	inf	·

8-разрядные числа с плавающей точкой



Центральная область более крупно

Важные частные случаи

_			
	exp	frac	Численное значение
♦ Нуль	0000	0000	0.0
Наим. положит. денорм.	0000	0001	
• float $\approx 1.4 \times 10^{-45}$			2 ⁻²³ ×2 ⁻¹²⁶
• double $\approx 4.9 \times 10^{-324}$			2 ⁻⁵² ×2 ⁻¹⁰²²
♦ Наиб. положит. денорм.	0000	1111	
• float $\approx 1.18 \times 10^{-38}$			$(1.0 - \epsilon) \times 2^{-126}$
• double $\approx 2.2 \times 10^{-308}$			$(1.0 - \epsilon) \times 2^{-1022}$
Наим. положит. норм.	0001	0000	
♦ float			1.0×2 ⁻¹²⁶
♦ double			1.0×2 ⁻¹⁰²²
♦ Единица	0111	0000	1.0
Наиб. положит. норм.			
• float $\approx 3.4 \times 10^{38}$			$(2.0 - \epsilon) \times 2^{127}$
• double $\approx 1.8 \times 10^{308}$			$(2.0 - \epsilon) \times 2^{1023}$
–∞ 	ормализов.	: +денормализо	ов.
	://>		
NaN	-0	+0	NaN

Операции над числами с плавающей точкой

 $x +_{FP} y = Round(x + y)$ $x \times_{FP} y = Round(x \times y)$ где Round() означает округление

♦ Выполнение операции

- ◆ Сначала вычисляется точный результат (получается более длинная мантисса, чем запоминаемая, иногда в два раза)
- Потом фиксируется исключение (например, переполнение)
- Потом результат округляется, чтобы поместиться в поле *frac*

Умножение чисел с плавающей точкой

- \diamond Точный результат $(-1)^s \cdot M \cdot 2^e$
 - **♦** Знак *s*
 - Значащие цифры $M = M_1 imes M_2$
 - ◆ Порядок e
 e1+ e2
- ♦ Преобразование
 - lacktriangle Если $M \geq 2$, сдвиг M вправо с одновременным увеличением e

 $s1 \wedge s2$

- ◆ Если е не помещается в поле ехр, переполнение
- Округление M, чтобы оно поместилось в поле frac
- ♦ Основные затраты на перемножение мантисс

Сложение чисел с плавающей точкой

$$lack (-1)^{s1} \cdot M_1 \cdot 2^{e1} + (-1)^{s2} \cdot M_2 \cdot 2^{e2}$$
 Пусть $e1 > e2$

- \diamond Точный результат $(-1)^s \cdot M \cdot 2^e$
 - Знак *s* и значащие цифры *M* вычисляются как показано на рисунке
 - ♦ Порядок суммы -e1

(-1)^{s1} M1 (-1)^{s2} M2 (-1)^s M

Преобразование

- Если $M \ge 2$, сдвиг M вправо с одновременным увеличением e
- Если M < 1, сдвиг M влево на k позиций с одновременным вычитанием k из e
- \bullet Если *е* не помещается в поле *exp*, переполнение
- lack Округление M, чтобы оно поместилось в поле frac

Пример 1. Вычисление суммы 5 чисел типа float

(мантисса – 6 десятичных цифр, порядок – 2 десятичных цифры):

- $0.231876*10^{02} + 0.645391*10^{-03} + 0.231834*10^{-01} + 0.245383*10^{-02} + 0.945722*10^{-03} =$
- a) $0.231876*10^{02} + 0.645391*10^{-03} + 0.231834*10^{-01} + 0.245383*10^{-02} + 0.945722*10^{-03} = 0.2321 47*10^{02}$;
- $23.1876 + 0.000645391 = 23.188245391 = 23.1882 = 0.231882*10^{02}$;
- $23.1882 + 0.0231834 = 23.2113834 = 23.2114 = 0.232114*10^{02}$;
- $23.2114 + 0.00245383 = 23.21385383 = 23.2138*10^{02};$
- $23.2138 + 0.000945722 = 23.214745722 = 23.2147 = 0.232147*10^{02};$
- b) $0.645391*10^{-03} + 0.9457*10^{-03} + 0.245383*10^{-02} + 0.231834*10^{-01} + 0.231876*10^{02} = 0.232157*10^{02}$;
- $0.000645391 + 0.000945722 = 0.001591113 = 0.00159111 = 0.159111*10^{-02};$
- $0.00159111 + 0.00245383 = 0.00494493 = 0.494493*10^{-02};$
- $0.00494493 + 0.0231834 = 0.02812833 = 0.0281283 = 0.281283*10^{-01};$
- $0.0281283 + 23.1876 = 23.2157283 = 23.2157 = 0.232157*10^{02};$

Пример 2. Вычисление разности плавающих чисел

(мантисса – 6 десятичных цифр, порядок – 2 десятичных цифры):

 $0.238617*10^{02} - 0.238616*10^{02} + 0.645391*10^{04} - 0.645392*10^{04} + 0.845791*10^{00} - 0.835790*10^{00} =$

- a) $0.238617*10^{02} 0.238616*10^{02} + 0.645391*10^{04} 0.645392*10^{04} + 0.845791*10^{00} 0.835790*10^{00} =$ **0.100000*10^{-05}** $0.238617*10^{02} - 0.238616*10^{02} = 23.8617 - 23.8616 = 0.0001 =$ **0.100000*10^{03}** $0.100000*10^{-03} + 0.645391*10^{04} = 0.0001 + 6453.91 = 6453.9101 =$ **0.645391*10^{04}** $0.645391*10^{04} - 0.645392*10^{04} = -0.000001*10^{04} = -$ **0.100000*10^{-01}** $-0.100000*10^{-01} + 0.845791*10^{00} = -0.01 + 0.845791 = 0.835791*10^{00}$ $0.835791*10^{00} - 0.835790*10^{00} =$ **0.0000001*10^{00} = 0.1000000*10^{-05}**
- b) $0.238617*10^{02} + 0.645391*10^{04} + 0.845791*10^{00} (0.238616*10^{02} + 0.645392*10^{04} + 0.835790*10^{00}) = \mathbf{0.100000*10^{00}}$ $0.238617*10^{02} + 0.645391*10^{04} = 23.8617 6453.91 = 6478.6 = \mathbf{0.647777*10^{04}}$ $0.647777*10^{04} + 0.845791*10^{00} = 6477.77 + 0.845791 = 6478.615791 = \mathbf{0.647862*10^{04}}$ $0.238616*10^{02} + 0.645392*10^{04} = 23.8616 + 6453.92 = 6477.7816 = \mathbf{6477.78*10^{04}}$ $0.647862*10^{04} + 0.835790*10^{00} = 6477.78 + 0.835790 = 6478.61579 = \mathbf{0.647852*10^{04}}$ $0.647862*10^{04} 0.647852*10^{04} = \mathbf{0.000010*10^{04}} = \mathbf{0.1000000*10^{-10^{00}}}$

Выводы по операциям

- (1) *При вычислении суммы чисел с одинаковыми знаками* необходимо упорядочить слагаемые по возрастанию и складывать, начиная с наименьших слагаемых.
- (2) При вычислении суммы чисел с разными знаками необходимо сначала сложить все положительные числа, потом все отрицательные числа и в конце выполнить одно вычитание.
- (3) Вычитание (сложение чисел с противоположными знаками) часто приводит к потере точности, которая у чисел с плавающей точкой определяется количеством значащих цифр в мантиссе (при вычитании двух близких чисел мантисса «исчезает», что ведет к резкой потере точности). Итак, чем меньше вычитаний, тем точнее результат.

Значащими цифрами числа с плавающей точкой называются все цифры его мантиссы за исключением нулей, стоящих в ее конце. Например, у числа $0.67000890000 * 10^3$ все цифры, выделенные жирным шрифтом, значащие. При вычитании двух близких чисел почти все значащие цифры пропадают. Например, $0.67000890 * 10^3 - 0.67000880 * 10^3 = 0.00000010 * 10^3 = 0.10 * 10^{-4}$. Таким образом, у результата всего одна значащая цифра, хотя у операндов было по 7 значащих цифр.

Плавающие типы языка Си

float, double, long double

- ♦ Операции над данными с плавающей точкой.
 - ♦ *Одноместные*: изменение знака («одноместный минус»: –), одноместный плюс (+).
 - Деухместные: сложение (+), вычитание (−), умножение (*), деление (/).
- ♦ Порядок выполнения арифметических операций в выражениях (приоритет).
 - ♦ самый низкий приоритет у двуместных + и -,
 - ♦ более высокий приоритет у двуместных * и /,
 - ◆ еще более высокий приоритет у одноместных + и −.

Режимы дсс для работы с плавающей точкой*

- https://gcc.gnu.org/wiki/FloatingPointMath Детальное резюме того, что бывает в дсс, и таблица преобразований, влияющих на результат вычислений
- -ffast-math: считать максимально быстро, но, возможно, нарушать стандарт IEEE-754
 - Полезно для тестирования, но не распространения финальной версии программы
- -fno-math-errno: не устанавливать переменную errno как результат ошибочного выполнения математических функций
 - ♦ Можно обойтись и без этого, но зависит от библиотеки Си
 - ★ Компилятор может заменять вызовы функций инструкциями процессора (например, sqrt)
- -fno-trapping-math: Считать, что вычисления с плавающей точкой не могут вызывать исключений процессора (traps)
 - ◆ Т.е. вы гарантируете отсутствие в своем коде ситуаций, вызывающих деления на ноль, переполнения, некорректные операции
 - ◆ Компилятор может более свободно комбинировать, переставлять, удалять операции с плавающей точкой
- David Goldberg. 1991. What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv. 23, 1 (March 1991), 5-48 https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html